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Abstract

Our purpose is to derive a model for charged particles which combines a kinetic description of the fast particles with

a fluid description of the slow ones. In a previous paper, a similar model was derived from a kinetic BGK equation that

uses a constant relaxation time and does not include the effect of an electric field. In this paper, we consider a more

general kinetic equation including an electric field and a varying relaxation time. Fast particles will be described through

a collisional kinetic equation of Vlasov–BGK type while thermal particles will be modeled by a hydrodynamic model.

Then, we construct a numerical scheme for this model and validate the approach by presenting various numerical tests.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Numerical simulations have become a very important tool to study complex problems in plasma physics.

Consequently, the description of the motion of charged particles arose as a crucial problem. Kinetic models

of Boltzmann type and, on the other hand, macroscopic models such as hydrodynamic ones are commonly

used in plasma physics. Even if hydrodynamic models are sufficiently accurate to describe many observed

phenomena, however, for some of them, a fluid treatment is inadequate. Thus, one must resort to a kinetic

model to overcome the insufficiency of the hydrodynamic models. Nevertheless, the numerical simulations

of kinetic models are very prohibitive in terms of both CPU time and memory storage. Thus, intermediate
models or hybrid approaches have been recently proposed; these approaches appear as a good compromise
0021-9991/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2004.09.006

* Corresponding author. Tel.: +5 61 55 76 45; fax: +5 61 55 83 85.

E-mail address: crouseilles@mip.ups-tlse.fr (N. Crouseilles).

mailto:crouseilles@mip.ups-tlse.fr 


N. Crouseilles et al. / Journal of Computational Physics 203 (2005) 572–601 573
between physical accuracy and a low computational cost. This paper is a contribution in this direction. In-

deed, we derive a hybrid kinetic–fluid model describing the evolution of slow particles by means of a hydro-

dynamic (or fluid) model, and restricting the use of the kinetic model to the modelling of fast particles.

In a previous paper ([13], see also [12]), the hybrid model was derived in a rarefied gas dynamics context.

A transport kinetic equation coupled with a BGK collision operator was considered as our basic model;
besides, a constant collision frequency was taken into account. This simple framework enabled us to make

rather exhaustive comparisons between the hybrid model, the full kinetic BGK model and the Euler equa-

tions. In the present work, we study the evolution of charged particles, so that the basic kinetic model used

in [13] and [14] has to be enriched. Two kinds of improvements are performed. On the one hand, we intro-

duce a given or self-consistent electric field (according to the considered case), which represents a wide

range of applications in plasma physics. On the other hand, binary collisions between charged particles

have to be considered. The simple BGK collision operator used in [14] with constant collision frequency

cannot accurately describe such collisions. Usually, the Fokker–Planck–Landau (FPL) collision operator
is the common collision model in plasma physics. Classically, the FPL operator is obtained as a remedy

to the loss of finiteness of the Boltzmann operator for long-range Coulomb interaction (see [16,21]). It takes

the form of a nonlinear partial integro-differential operator whose direct numerical implementation is very

expensive and difficult. Consequently, a simpler relaxation time model of BGK type (intended to approx-

imate the FPL operator) is considered in this paper. A collision frequency m depending on time, space and

velocity is computed from the FPL operator using results in [19] for instance. The so-obtained frequency

behaves like jvj�3 for large particle velocities v which corresponds to the usual behaviour for Coulombian

interactions between charged particles (see [2]). On the basis of these two investigations (electric field and
collision frequency), a physically realistic numerical code for one-dimensional plasmas has been developed.

Following the methodology introduced in [12] and developed in [13,14], we derive a hybrid kinetic–fluid

model based on a domain decomposition method in the velocity variable. We consider a set of particles as

described by a distribution function f = f(t,x,v), where t 2 [0,+1[, x 2 X and v 2 R3 denote time, position

and velocity, respectively, and X is a bounded subdomain of R3. The quantity f(t,x,v)dx dv represents the

number of particles at time t in an elementary volume dx dv in the phase space around (x,v). Before defining

the model satisfied by f, let us introduce the expression of a Maxwellian M
MðvÞ ¼ exp � q
RT

� jvj2=2� u � v
RT

 !
; ð1:1Þ
where q = q(t,x), u = u(t,x), T = T(t,x) (the chemical potential, the mean velocity and the temperature of

M) are the parameters of M; R is the gas constant. The evolution of f is governed by a kinetic equation
which we consider as our starting point for the derivation of the hybrid model
of
ot

þ v � rxf þ e
m
E � rvf ¼ mðM½f ;m� � f Þ; ð1:2Þ
where E = E(t,x) is a given electric field, m the mass of the particle, e the unit charge and m = m(t,x,v) is a
collision frequency, depending on time, space and velocity. Moreover, M½f ;m� has the Maxwellian form

(1.1); its parameters qm, um, Tm are functions of t and x only and are determined from the moments of mf
by the following constraints:
Z
R3

mf ðvÞ
1

v

jvj2

0
B@

1
CAdv ¼

Z
R3

mM½f ;m�ðvÞ
1

v

jvj2

0
B@

1
CAdv: ð1:3Þ
This ensures the conservation of the mass, the momentum and the energy of the particles. Within the frame-
work of this paper, we also consider a self-consistent electric field E which evolves through the Poisson

equation. Eqs. (1.2) and (1.3) are supplemented with an initial condition f(t = 0,x,v).
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Our hybrid model relies on the assumption that the particles can be clearly grouped into two categories.

The first category consists of thermal particles, whose distribution function is close to a Maxwellian. The

second category is that of suprathermal or energetic particles. Following this assumption, we choose a do-

main B1 in velocity space (most often a ball as in [13] or [14]) and we suppose that the distribution function

can be approximated by a Maxwellian inside B1. Therefore, we make the Ansatz that the solution of (1.2)
and (1.3) can be approximated by
f ðvÞ ¼
M1ðvÞ; v 2 B1;

f2ðvÞ; v 2 B2 ¼ R3 n B1;

�
ð1:4Þ
where M1 has the Maxwellian form (1.1) and f2 is the restriction of f to B2. The parameters of M1 are
(q1,u1,T1) and are determined by
Z
B1

f ðvÞ
1

v

jvj2

0
B@

1
CAdv ¼

Z
B1

M1ðvÞ
1

v

jvj2

0
B@

1
CAdv: ð1:5Þ
We must derive a set of fluid equations for (q1,u1,T1) from the Vlasov–BGK model (1.2) and (1.3), as well as

a kinetic equation for f2. The way we achieve this task is the same as in [14]: we take the moment equations

of (1.2) and (1.3) on the domain B1 and close the system by using an entropy minimization strategy [29].
The so-obtained system differs from the hybrid model derived in [14] because of the presence of the electric

field. It intervenes in two ways. On the one hand, it plays a part as a source term of the fluid model, as usual

in the fluid approximation of plasmas [2,11,26]. On the other hand, its influence together with the variations

of the fluid domain in space and time, induces fluxes of particles from B1 to B2 and vice versa. These fluxes

appear as source and sink terms depending on f2 in the Euler equations, and as boundary conditions

depending on M1 at the boundary of B2 for f2. Besides, the electric field is present in the kinetic part of

the model.

We shall present a numerical strategy which respects the balance between the two sets of equations. The
methodology is mainly the same as in [14]: the basic kinetic equation was discretized following a conserv-

ative finite volume method which also preserves the positivity, and the decomposition was performed at the

discrete level; the discrete moment equations were obtained for the thermal particles and a discrete entropy

minimization principle was used to close these equations. In this paper, the main difference comes from the

discretization of the Vlasov equation (the left hand side of (1.2)). To that purpose, we adopt a method

which discretizes (1.2) on a phase space grid (see [4,36]). But, both conservation and positivity properties

are difficult to obtain due to the projection on the grid. Since the positivity property is crucial in our case

to guarantee the existence of the Maxwellians M1 and M½f ;m�, the scheme has to be positive. Thus, we adopt
a first order finite volume method which warrants the strict positivity of the distribution function (at the

cost of a restriction on the time step), even if it does not ensure the energy conservation. However, following

[14], an algorithm that respects the balance between the kinetic and fluid sets of equations can be obtained.

Of course, there exist conservative and positive numerical schemes to approach Vlasov type equations with-

out any restriction on the time step (see [24]), but a simpler scheme is chosen here.

In this paper, we try to demonstrate the validity of the hybrid approach by comparing it on the one hand

to the kinetic model of BGK type from which the hybrid model can be derived, and on the other hand to

the Navier–Stokes equations. To that purpose, various numerical tests have been implemented to describe
the evolution of charged particles in the one dimensional case in space and velocity. These numerical tests

deal with various plasma physics situations: electronic shock waves, Landau damping, ion acoustic waves

or deceleration of an electron beam. Our results are also compared to analytical or literature results,

according to the test case.
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We now outline some similar approaches in the literature. This approach was first developed for

diffusion equations in [12], and for hydrodynamic equations in [13,14]. It bears some similarities with

the so-called df method ([1,35,7]). Most hybrid kinetic–fluid approaches used so far are based on a do-

main-decomposition in position space: a fluid model is used except in specific regions where the flow is sup-

posed to be far from equilibrium, and where a kinetic model is used (see [5,27,28] for the gas dynamics
context and [6,20,31] for the plasmas or [17] for the semiconductors). A smooth transition between the

two models can also be envisaged like in [18]. Thus, one uses hybrid codes: a kinetic solver and a hydro-

dynamic solver are used in different regions of the flows.

The remainder of the paper is organized as follows. In a first part, we derive the hybrid model taking

account of a given electric field and a varying collision frequency. Then, we present the numerical scheme

allowing us to discretize the hybrid model. Before concluding, various numerical tests coming from plasma

physics are presented to validate the approach.
2. Derivation of the hybrid model

This section is devoted to the derivation of the hybrid model describing the evolution of charged parti-

cles in a collisional plasma. The starting point of the methodology is the collisional kinetic equation (1.2)

and (1.3). This model is a simplified one which allows us to make the derivation of the hybrid model easier.

Admittedly, the FPL collision operator is more adapted to describe binary collisions between charged par-

ticles, for which the interaction potential is the long-range Coulomb interaction; but its direct numerical
implementation is very expensive, in spite of several approaches for reducing its computing cost (see [8]).

Consequently, we propose to adopt in this paper a BGK type model which expresses the relaxation towards

a local equilibrium. We take into account the FPL collision operator by introducing in (1.2) the collision

frequency m derived from the FPL collision operator. This collision frequency is a function of the velocity

(see [2] for instance) and expresses the Coulombian interaction of the particles. Let us denote by

m ¼ mðjv� ujÞ 2 R (where u is the mean velocity of the considered particles) a collision frequency between

the considered particles (like electrons). Some computations which are detailed in Appendix A lead to the

following expression of m:
mðjv� ujÞ ¼ CFP

ð4=3Þð2pÞ�1=2n=ðRT Þ3=2 if jv� uj 6 C0

ffiffiffiffiffiffiffi
RT

p
;

2n=jv� uj3 if jv� uj > C0

ffiffiffiffiffiffiffi
RT

p
;

(
ð2:1Þ
where CFP ¼ e4 lnK=ð8pm2e20Þ, e is the electric charge, lnK is the usual Coulomb logarithm and e0 is the per-
mittivity of free space, m is the mass of the considered particles. Besides, C0 is chosen such that m(jv � uj) is
a continuous function of jv � uj, i.e.
C0 ¼ 3
2

� �1=3ð2pÞ1=6:

Finally, R = kB/m is the gas constant associated to the considered particles (where kB stands for the Boltz-

mann constant) and n, u, T denote the density, the mean velocity and the temperature of f
n ¼
Z
R3

f ðvÞ dv; u ¼ 1

n

Z
R3

vf ðvÞ dv; T ¼ 1

3Rn

Z
R3

jv� uj2f ðvÞ dv: ð2:2Þ
To derive our hybrid model, the starting point is the Vlasov–BGK equation (1.2) and (1.3) where m is the

collision frequency (2.1). Let us now introduce B1 and B2
B1 ¼ v 2 R3jjv� ujj 6 R
ffiffiffiffiffiffiffi
RT

pn o
; B2 ¼ R3 n B1;
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where R is a nonnegative constant, u and T are, respectively, some characteristic velocity and temperature

of the plasma. A possible choice can be u = u and T = T, where u and T are given in (2.2). Let us also intro-

duce some notations relative to B1 and B2.

Definition 2.1. For all function g : R3 ! R, we define for i = 1,2

�

giðvÞ ¼

gðvÞ if v 2 Bi;

0 otherwise:
Our goal is to approximate (1.2) and (1.3) by a kinetic–fluid model. The methodology is the same as in
[14] and we refer to it for more details. Let f be a solution to (1.2) and (1.3). Associated to f, we denote by f2
the unknown of the kinetic part of the hybrid model. On the other hand, the fluid part is a system satisfied

by the moments of f on B1. If we denote by m(v) the conserved quantities
mðvÞ ¼ ð1; v; jvj2ÞT; ð2:3Þ

the moments U1 = (n1,P1,2W1) of f on B1 are written
Z
B1

f ðvÞmðvÞ dv ¼
n1
P 1

2W 1

0
B@

1
CA ¼ U 1; ð2:4Þ
where n1 is the density, P1 the momentum and W1 the total energy of f on B1. Finally, we consider the fol-

lowing entropy minimization problem:
Given n1 P 0; P 1 2 R3; W 1 P 0; find a nonnegative function M1 on B1;

realizing the following minimum

Min
R
B1
gðvÞ logðgðvÞÞ dv; g P 0; s:t:

R
B1
gðvÞmðvÞ dv ¼

n1
P 1

2W 1

0
B@

1
CA

8><
>:

9>=
>;:

8>>>>>><
>>>>>>:

ð2:5Þ
Under some conditions on U1, the unique solution of (2.5) is given by a Maxwellian function whose

expression is
M1ðvÞ ¼ expðk1 � mðvÞÞ ¼ expðk10 þ k11 � vþ k12jvj
2Þ; ð2:6Þ
where k1 ¼ ðk10; k
1
1; k

1
2Þ

T 2 R5 is uniquely determined by the constraints
Z
B1

expðk1 � mðvÞÞmðvÞ dv ¼
n1
P 1

2W 1

0
B@

1
CA: ð2:7Þ
Now, in order to write the hybrid system satisfied by (n1,P1,W1,f2), we take the moments of (1.2) on B1 and

close by the Maxwellian (2.6). On B2, a kinetic description is keeped. In the present case, we obtain the fol-

lowing system on (n1,P1,W1, f2):
o
ot

n1
P 1

W 1

0
B@

1
CAþrx �

wn1

wP1

wW 1

0
B@

1
CA ¼

0
e
m n1E

e
m P 1 � E

0
B@

1
CAþ

nð1Þm � nm;1
P ð1Þ
m � P m;1

W ð1Þ
m � W m;1

0
B@

1
CAþ

Gn1

GP 1

GW 1

0
B@

1
CA�

Ln1

LP1

LW 1

0
B@

1
CA;

of2
ot þ v � rxf2 þ e

m E � rvf2 ¼ m M½M1þf2;m�
� �

2
� f2

� �
; on B2

8>>>><
>>>>:

ð2:8Þ
with the boundary condition: f2ðvÞ ¼ M1ðvÞ 8v 2 Sþ.



N. Crouseilles et al. / Journal of Computational Physics 203 (2005) 572–601 577
Let us detail the notations used in (2.8). The expressions ðnð1Þm ; P ð1Þ
m ; W ð1Þ

m Þ and ðnm;1; P m;1;W m;1Þ are given
by:
nð1Þm

P ð1Þ
m

2W ð1Þ
m

0
B@

1
CA ¼

Z
B1

mM½M1þf2;m�mðvÞ dv;
nm;1
P m;1

2W m;1

0
B@

1
CA ¼

Z
B1

mM1ðvÞmðvÞ dv:
The quantities
wn1

wP 1

2wW 1

0
B@

1
CA ¼

Z
B1

M1ðvÞvmðvÞ dv ¼
Z
B1

M1ðvÞ
v

v� v

jvj2v

0
B@

1
CA dv ð2:9Þ
are the moment fluxes and M1ðvÞ is given by (2.6) and (2.7). The outgoing and incoming semi-fluxes in the

fluid equation are defined by:
Ln1

LP1

2LW 1

0
B@

1
CA :¼

Z
Sþ

F
!
ðvÞ � s!M1ðvÞmðvÞ dSðvÞ;

Gn1

GP 1

2GW 1

0
B@

1
CA :¼

Z
S�

j F
!
ðvÞ � s! jf2ðvÞmðvÞ dSðvÞ;
where the term
F
!
ðvÞ ¼ D

v� u
R

ffiffiffiffiffiffiffi
RT

p
� �

� e
m
E with D ¼ o

ot
þ v � rx ð2:10Þ
is a force; the first term results from the space and time variations of B1 whereas the second term is due to

the electric field. Now, if we denote by Sðu;R
ffiffiffiffiffiffiffi
RT

p
Þ the boundary of B1, which, in the case we consider, is a

sphere of center u and radius R
ffiffiffiffiffiffiffi
RT

p
, we can define S� and Sþ as follows:
S� ¼ fv 2 Sðu;R
ffiffiffiffiffiffiffi
RT

p
Þ s:t: F

!
ðvÞ � s! < 0g; ð2:11Þ

Sþ ¼ fv 2 Sðu;R
ffiffiffiffiffiffiffi
RT

p
Þ s:t: F

!
ðvÞ � s! > 0g; ð2:12Þ
where s
!

is the outward unit normal to Sðu;R
ffiffiffiffiffiffiffi
RT

p
Þ. Finally, dS(v) is the Euclidean surface element on

Sðu;R
ffiffiffiffiffiffiffi
RT

p
Þ.
3. Numerical schemes for the hybrid model

In this section, we present a numerical scheme for the hybrid model (2.8). The approximation proposed
here is mainly the same as [14] and we refer to it for more details. Nevertheless, the hybrid model (2.8) takes

account of the effect of an electric field and comprises a velocity derivative. These differences with [14] in-

volve some additional problems. Indeed, it is known that both the conservation of energy and the property

of the positivity of the distribution function are difficult to preserve when one approximates the Vlasov

equation on a phase space grid. Here, we propose a numerical scheme that ensures the positivity of the

distribution function. Indeed, this property of positivity is crucial in our case since it guarantees the Max-
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wellian form of the solution to the entropy minimization problem (2.5) (see [32] or [14] for more details).

However, the numerical scheme does not ensure the exact conservation of the energy but the perfect

balance between the two sets of equations (hydrodynamic and kinetic parts) is preserved at the discrete

level.

We start from a fully discretized version of the basic kinetic equation in position, velocity and time.
To that purpose, we use a first order finite volume method [23] to approximate the Vlasov–BGK equa-

tion (1.2) and (1.3). Then we perform the domain decomposition and pass to the fluid quantities (mo-

ments on B1), directly on the discrete equations. The motion of the ball B1, which takes account of

the evolution of the mean velocity u and the temperature T, is performed at the end of each discretization

step.

The numerical scheme is presented in one dimension of both space and velocity but can be easily ex-

tended to any higher dimensions. For the sake of simplicity, we let e = m = 1 in the sequel. We consider

a cartesian grid xi ¼ iDx; vk ¼ kDv; i; k 2 Z, while tn = nDt is the time discretization, n 2 N. We denote
by Dx, Dv and Dt the space, velocity and time steps. We approximate f ðtn; xi; vkÞ by f n

i;k such that
f nþ1
i;k ¼ f n

i;k � vþk
Dt
Dx

f n
i;k � f n

i�1;k

h i
� v�k

Dt
Dx

f n
iþ1;k � f n

i;k

h i
� En;þ

i
Dt
Dv

f n
i;k � f n

i;k�1

h i
� En;�

i
Dt
Dv

f n
i;kþ1 � f n

i;k

h i
þ Dtmni;k En

i;k � f n
i;k

h i
; ð3:1Þ
where b± = (b ± jbj)/2 for an arbitrary real quantity b, En
i ¼ Eðtn; xiÞ; mni;k ¼ mðtn; xi; vkÞ and En

i;k is defined as

being the Maxwellian such that
X
k2Z

mni;kE
n
i;kmkDv ¼

X
k2Z

mni;kf
n
i;kmkDv ð3:2Þ
with mk = m(vk)
mk ¼ ð1; vk; jvkj2Þ: ð3:3Þ

Now, in order to decompose the velocity domain, we have to define a discretized version of the ball B1.

In the remainder of this paper, we shall choose u and T as the global mean velocity u and temperature T,

respectively. They are approximated at point xi and at time tn by:
uni ¼
Pn
i

nni
; ð3:4Þ

T n
i ¼

2W n
i n

n
i � ðPn

i Þ
2

Rðnni Þ
2

; ð3:5Þ
where nni ; P
n
i and W n

i are the mass, momentum and energy at xi and tn, and are such that
Un
i ¼

nni
P n
i

2W n
i

0
B@

1
CA ¼

X
k2Z

f n
i;kmkDv:
Then, at position xi and time tn, ðB1Þni can be approximated by the following discrete set:
Kn
i ¼ fk 2 Z s:t: vk ¼ kDv satisfies jvk � uni j 6 R

ffiffiffiffiffiffiffiffi
RT n

i

p
g; ð3:6Þ
where R is an arbitrary nonnegative parameter.

To introduce the moments of a discrete distribution function, let us denote by g ¼ ðgkÞk2Z an arbitrary

sequence. Then, we define the moments of g on Kn
i by
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Mn
i ðgÞ ¼

X
k2Kn

i

gkmkDv
and the moments of the shifted sequences ðgk�1Þk2Z

Mn

i;�ðgÞ ¼
X
k2Kn

i

gk�1mkDv:
We also denote by
Un
1;i ¼ Mn

i ðf n
i Þ;
the discrete moments of f n
i ¼ ðf n

i;kÞk2Z on the discrete ball; the restriction of ðf n
i;kÞk2Z on Z nKn

i is defined by
f n
2;i;k ¼

f n
i;k if k 2 Z nKn

i ;

0 otherwise:

�

We are going to present an algorithm which, from the knowledge of Kn
i ;U

n
1;i; f

n
2;i;k at time tn, computes

Knþ1
i ;Unþ1

1;i ; f
nþ1
2;i;k at time tn + 1, based on the moments of (3.1). First, the discrete fluxes on Kn

i of an arbi-

trary discrete distribution function g ¼ ðgkÞk2Z are denoted by
wn
1;i;�ðgÞ ¼

X
k2Kn

i

v�k gkmkDv; ð3:7Þ
whereas the moments of mniE
n
i ¼ ðmni;kEn

i;kÞk2Z and of mni f
n
i ¼ ðmni;kf n

i;kÞk2Z on Kn
i are written
Un
1;i;m ¼ Mn

i ðmni f n
i Þ; Un

ð1Þ;i;m ¼ Mn
i ðmniEn

i Þ:
To close our discrete moment systems, we shall approximate f n
i;k on Kn

i by the solution ðMn
1;i;kÞk2Kn

i
of the

following minimization problem with the prescribed moments Un
1;i:
Min
X
k2Kn

i

gk logðgkÞDv; g ¼ ðgkÞk2Z; gk P 0 8k 2 Kn
i s:t: Mn

i ðgÞ ¼ Un
1;i

8<
:

9=
;: ð3:8Þ
This minimization problem is solved in the same way as in [14]. If the prescribed moments Un
1;i are strictly

realizable (i.e., Un
1;i is the moment vector of a strictly positive discrete function), Mn

1;i;k has the following

Maxwellian form Mn
1;i;k ¼ expðkn1;i � mkÞ, where kn1;i 2 R3 is the solution to the discrete moment problem:
X

k2Kn
i

expðkn1;i � mkÞmkDv ¼ Un
1;i: ð3:9Þ
Now, we first take the moments of Eq. (3.1) on Kn
i and close the resulting equations using Mn

1;i;k. In a fol-

lowing step, we shall ‘‘move’’ the set Kn
i into a new one, Knþ1

i . Let us introduce the moments ~U
nþ1

1;i of f nþ1
i

on the ball Kn
i

~U
nþ1

1;i ¼ Mn
i ðf nþ1

i Þ;
as well as the restriction of f nþ1
i;k onto its complementary Z nKn

i

~f
nþ1

2;i;k ¼
f nþ1
i;k if k 62 Kn

i ;

0 otherwise:

(

If we take the discrete moments of Eq. (3.1) on Kn
i , and close the resulting moment equations by the solu-

tion Mn
1;i;k 8k 2 Kn

i of the discrete entropy minimization problem (3.8) on the one hand, and take the

restriction of Eq. (3.1) on Z nKn
i on the other hand, we obtain:
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~U
nþ1

1;i ¼ Un
1;i �

Dt
Dx

wn
1;i;þðMn

1;iÞ � wn
1;i;þðMn

1;i�1 þ f n
2;i�1Þ

h i
� Dt
Dx

wn
1;i;�ðMn

1;iþ1 þ f n
2;iþ1Þ � wn

1;i;�ðMn
1;iÞ

h i
� Dt
Dv

En;þ
i Un

1;i �Mn
i;�ðMn

1;i þ f n
2;iÞ

h i
� Dt
Dv

En;�
i Mn

i;þðMn
1;i þ f n

2;iÞ � Un
1;i

h i
þ Dt Un

ð1Þ;i;m � Un
1;i;m

h i
; ð3:10Þ

~f
nþ1

2;i;k ¼ f n
2;i;k � vþk

Dt
Dx

f n
2;i;k � ðMn

1;i�1;k þ f n
2;i�1;kÞ

h i
� v�k

Dt
Dx

ðMn
1;iþ1;k þ f n

2;iþ1;kÞ � f n
2;i;k

h i
� En;þ

i
Dt
Dv

f n
2;i;k � ðf n

2;i;k�1 þMn
1;i;k�1Þ

h i
� En;�

i
Dt
Dv

ðf n
2;i;kþ1 þMn

1;i;kþ1Þ � f n
2;i;k

h i
þ Dtmni;k En

2;i;k � f n
2;i;k

h i
: ð3:11Þ
The next step of the algorithm is to consider the time variations of Kn
i . To that purpose, we construct

ð ~Mnþ1

1;i;kÞk2Kn
i
the discrete distribution solution to (3.8) with the prescribed moments ~U

nþ1

1;i . Then we define an

approximation of f nþ1
i;k for all k 2 Z, solution to Eq. (3.1) by ~f

nþ1

i;k such that
f nþ1
i;k � ~f

nþ1

i;k ¼
~M

nþ1

1;i;k if k 2 Kn
i ;

~f
nþ1

2;i;k if k 62 Kn
i :

8<
:

Hence, the discrete moments of ~f
nþ1

i;k are an approximation of Unþ1
i . At this level, unþ1

i ; T nþ1
i and Knþ1

i can

then be defined through (3.4) and (3.5) (with n replaced by n + 1). The unknowns at the next time step are

finally:
Unþ1
1;i ¼ Mnþ1

i ð~f nþ1

i Þ; ð3:12Þ

f nþ1
2;i;k ¼ ~f

nþ1

i;k

���
ZnKnþ1

i

: ð3:13Þ
Remark 3.1. Let us consider ðf 0
i;kÞi2I ;k2Z a strictly positive initial condition where I is the discrete bounded

computational domain in space. Moreover, let us denote byK a bounded discrete velocity domain which is

a truncation of Z. If the following condition on the time step Dt is fulfilled:
Dt max
i2I;k2K

mni;k þ
1

Dx
max
k2K

jvkj þ
1

Dv
max
i2I

En
i

� �
< 1;
then the kinetic sequence ðf n
2;i;kÞnP0 defined by the above algorithm satisfies
f n
2;i;k > 0 for all n P 0; i 2 I ; k 2 K nKn

i :
The proof of this statement is a straightforward generalization of a similar statement (with E = 0) proved in

[14]. Our time-stepping strategy is based on it.
4. Numerical results

In this section, we present numerical tests to validate the approach. We check our method on one-

dimensional numerical tests. Although the collision frequency (2.1) was obtained from a three-dimensional
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operator, we shall use it in our one-dimensional simulations. We are aiming at a qualitative rather than

quantitative results. For more realistic simulations, fully three-dimensional computations are necessary

but are outside the scope of the present work. Numerically, the boundary conditions in space variable

are treated by a ghost cell technique or by periodic conditions, according to the test case. In the velocity

variable, the distribution function is truncated to zero for large velocities.
4.1. Stationary shock wave without electric field

4.1.1. Plasma context

We study a one-dimensional stationary shock wave (see [3,32]) for electrons. The flow is initialized with

two Maxwellian states related by the discrete Rankine–Hugoniot relations (see [32] or [14] for more details).

The starting kinetic equation is the following:
of
ot

þ v � rxf ¼ mðM½f ;m� � f Þ; ð4:1Þ
where m is chosen as in Definition 2.1
mðjv� ujÞ ¼ CFP

ð4=3Þð2pÞ�1=2n=ðReT Þ3=2 if jv� uj < C0

ffiffiffiffiffiffiffiffi
ReT

p
;

2n=jv� uj3 if jv� uj P C0

ffiffiffiffiffiffiffiffi
ReT

p
;

(
ð4:2Þ
where C0 = (3/2)1/3(2p)1/6, and CFP ¼ e4 lnK=ð8pm2
ee

2
0Þ. We have used the following values for the density

nL = 7.2857 · 1024 m�3, the mean velocity uL = 6.95549 · 105 m s�1, and the temperature TL = 293 K, of

the upstream flow. We only consider electrons whose mass is equal to me = 9.1 · 10�31 kg. These values
yield a shock Mach number equal to 6.

For numerical reasons, we will use dimensionless variables. We choose as units of our problem the mean

free path l as unit of length, the thermal velocity v0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
ReTR

p
(where TR is the temperature of the down-

stream flow) as unit of velocity and the collision time s0 = l/v0 as unit of time. We choose the values of l,

v0 and s0 as following:
l ¼ 5:158� 10�9 m; v0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
ReTR

p
¼ 3:49583� 105 m s�1; s0 ¼ l=v0 ¼ 1:4755� 10�14 s:
We obtain the following value for the dimensionless CFP:
C0
FP ¼ CFP=ðl6s�4

0 Þ ¼ CFP=ðl2v40Þ ¼ 15:25:
The velocity set extends from �vmax to vmax = 6 and the physical space is [0,50]. The velocity step Dv is
chosen equal to 0.05 whereas Nx = 200 points are used in the x variable. The same numerical parameters are

used for the kinetic model.

In Figs. 1–3, we present the profiles of the density, the mean velocity and the temperature, as functions of

the scaled space. These figures display the results obtained by the full BGK equation (discretized by Eq.

(3.1)), by the Navier–Stokes equations (discretized following [16]) and by the hybrid model, for different

values of R ðR ¼ 0:5; 2 and 4Þ.
We observe that, for small R, the hybrid model is closer to the BGK model than to the Navier–Stokes

equations, but the shock profiles are stiffer than that of the BGK equation. In this case (small values of R),
our model has an intermediate behaviour between the kinetic model and the Navier–Stokes equations, as

could be expected. We also notice that the hybrid model has a better behaviour than the Navier–Stokes

equations upstream the shock. Moreover, when R is large enough, the hybrid model present stiffer shock

profiles than the Navier–Stokes ones. Indeed, at large R, the hybrid model approximates the Euler equa-

tions (without diffusion terms).
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Fig. 1. Stationary shock wave: density as a function of x. The Mach number of the flow is 6. Comparison of the BGK model, the

hybrid model and the Navier–Stokes equations for different values of R ((a) R ¼ 0:5, (b) R ¼ 2, (c) R ¼ 4).
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Fig. 2. Stationary shock wave: mean velocity as a function of x. The Mach number of the flow is 6. Comparison of the BGK model,

the hybrid model and the Navier–Stokes equations for different values of R ((a) R ¼ 0:5, (b) R ¼ 2, (c) R ¼ 4).
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In Fig. 4, the distribution functions computed by the hybrid model at locations upstream, within, and

downstream the shock are plotted as functions of the normalized velocity. On Fig. 5, we compare the dis-

tribution function given by the hybrid model to the distribution function given by the full BGK model with-

in the shock, as functions of the velocity variable, for different values of R. When the flow is at equilibrium,

the distribution functions are very well approximated by the hybrid model. On the contrary, inside the

shock, our model loses accuracy. Indeed, it reconstructs the distribution function f by a Maxwellian on

the ball B1 whereas f is far from equilibrium in this zone. Nevertheless, the bump in the tail of f is accurately

represented by the hybrid reconstruction if R is sufficiently small. We also notice a small discontinuity at
the boundary of the ball: this is the transition between the kinetic unknown f2 and the Maxwellian M1.
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Fig. 3. Stationary shock wave: temperature as a function of x. The Mach number of the flow is 6. Comparison of the BGK model, the

hybrid model and the Navier–Stokes equations for different values of R ((a) R ¼ 0:5, (b) R ¼ 2, (c) R ¼ 4).
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normalized velocity, given by the hybrid model for different values of R ((a) R ¼ 0:5, (b) R ¼ 2, (c) R ¼ 4).
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We plot in Fig. 6, the heat flux obtained by the BGK and the hybrid model for different values of R, as a

function of the space. We defined the heat flux by ð1=2Þ
R
R
jv� uj2ðv� uÞf ðvÞ dv, where u is the mean veloc-

ity. It is constant when we are far from the shock and presents very large gradients in the shock zone. The

heat flux is accurately described by the hybrid model, since the correct behaviour is reached for sufficiently

large R. Nevertheless, the amplitude of the peak becomes smaller as R is increasing and a discontinuity is
creating downstream the shock ðR ¼ 4Þ. In this case, we recover a hydrodynamic behaviour.

4.1.2. Gas dynamics context

In this section, we are interested in the simulation of a rarefied gas flow. As in the previous section, we

compare the hybrid model with the associated kinetic model and with the Navier–Stokes equations. The
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basic kinetic model is (4.1), where m is adapted to describe binary collisions between particles in a rarefied

gas. Following [38], we choose the collision frequency with a polynomial form in velocity variable
mðjv� ujÞ ¼ njv� uja; ð4:3Þ

where u is the mean velocity of the flow, n = n(t,x) and a > 0 are determined to reach the correct Prandtl

number (2/3 for most monoatomic gases). More precisely, an expansion of the solution to the BGK equa-

tion (4.1) with the collision frequency (4.3) in power of the Knudsen number e (Hilbert or Chapman-

Enskog expansion [9,10]) can be done. If the second order in e is retained, both the function n(t,x) and
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the parameter a can be computed as a function of a reference viscosity coefficient and of the Prandtl num-

ber. On the one hand, we find for n(t,x)
1

1

1

1

2

de
ns

ity

(a)

Fig. 7.

hybrid
nðt; xÞ ¼ 2n
dðd þ 2Þ

ð2RT Þð2�aÞ=2

l

C 4þd�a
2

� �
C dþ2

2

� � ;
where CðxÞ ¼
Rþ1
0

tx�1e�t dt, d is the dimension, n the density and T the temperature, R = kB/m is the gas

constant (kB denotes the Boltzmann constant and m the particle mass), l is the viscosity coefficient of

the Boltzmann equation: l = l0(T/T0)
a/2 and l0, T0 are, respectively, the reference viscosity at the temper-

ature T0 (l0 = 2.117 · 10�5 N s m�2 and T0 = 273 K for argon (see [3])). On the other hand, the power a is

equal to 1.3 in order to reach the correct Prandtl number of 2/3 in dimension one in the velocity variable.

Finally, the collision frequency (4.3) has the following expression:
mðjv� ujÞ ¼ 2n
3

ð2RT Þð2�aÞ=2

l

C 5�a
2

� �
C 3

2

� � jv� uja; a ¼ 1:3: ð4:4Þ
This collision frequency has already been implemented in [33] for the BGK model.

The shock profiles of the macroscopic quantities (density, mean velocity and temperature) obtained by

the BGK model, the Navier–Stokes equations and the hybrid model for different values of R are presented

on Figs. 7–9. As in the plasma context, the hybrid model has an intermediate behaviour between the kinetic

model and the hydrodynamic one. When R is small enough, the hybrid model is very close to the BGK
model whereas the profiles become stiffer as R increases. We observe that the curves obtained by our model

with R ¼ 2 are not very correct upstream the shock. Our method suffers of the problem of the discontinuity

in the profiles of the macroscopic variables. This phenomenon is characteristic of the classic moment meth-

ods (see [22,30]). Large values of R give very stiff profiles which correspond to profiles given by Euler

equations.

We plot in Fig. 10, the distribution functions computed by the hybrid model at locations upstream, with-

in and downstream the shock. In Fig. 11, we compare the results given by the hybrid model to the results of

the full BGK model on the distribution function within the shock, as a function of the velocity variable. As
in [14], the departure from the equilibrium is not very well described by the hybrid model. The method
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Stationary shock wave: density as a function of x. The Mach number of the flow is 6. Comparison of the BGK model, the

model and the Navier–Stokes equations for different values of R ((a) R ¼ 0:5, (b) R ¼ 2, (c) R ¼ 4).
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needs a very small R to recover the results given by the kinetic model (e.g., for R ¼ 0:5, the reconstructed
distribution function is very close to f). On the contrary, when R is greater ðR ¼ 4Þ, the distribution func-

tions given by the hybrid model become Maxwellians and we recover hydrodynamical results; hence, in

these cases, our model is not accurate enough.

Finally, Fig. 12 presents the heat flux approximated by both the kinetic model and the hybrid model for

different R. For the definition of the heat flux, we consider ð1=2Þ
R
R
jv� uj2ðv� uÞf ðvÞ dv, where u denote

the mean velocity. The hybrid model gives interesting results; besides, when R is small enough, we recover

the results of the kinetic model, as expected. As R is growing, the amplitude of the peak becomes small
compared to the results obtained by the BGK model.
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Fig. 10. Stationary shock wave: distribution functions at locations upstream, within and downstream the shock as functions of the
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4.2. Landau damping without collision

In this section, we propose to validate our method against the standard test case of the linear Landau

damping. This test is a collisionless one but a self-consistent electric field is considered through the Poisson

equation. We study the evolution of electrons whose distribution function is, initially, an isotropic Maxwel-

lian of density n0 and of temperature T0. The plasma is then perturbed and a periodic damped wave is cre-

ated. The object of this test is the study of the evolution of this damped wave. To that purpose, we consider

the distribution function of electrons which is a solution to the Vlasov–Poisson equation
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of
ot

þ v � rxf þ e
me

E � rvf ¼ 0;
where the self-consistent electric field E is coupled to the Poisson equation
oxE ¼ e
e0

Z
R

f ðvÞ dv� ni

� �
;

where e is the unit charge, me the electron mass, e0 the permittivity of free space and ni the ion density which

we assume to be constant. To accurately describe the physical phenomena, we introduce dimensionless

parameters. Hence, we introduce the plasma frequency xp, the Debye length kD and the thermic velocity

of electrons vth by:
xp ¼

ffiffiffiffiffiffiffiffiffi
n0e2

e0me

s
; kD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0kBT 0

n0e2

s
; vth ¼

ffiffiffiffiffiffiffiffiffiffi
kBT 0

me

s
; ð4:5Þ
where kB is the Boltzmann constant. The scaled initial condition associated to the scaled Vlasov–Poisson

equation has the following form:
f0ðx; vÞ ¼
1ffiffiffiffiffiffi
2p

p exp � v2

2

� �
1þ a cosðkxÞð Þ; ðx; vÞ 2 ½0; 2p=k� � R; ð4:6Þ
where a is the amplitude of the initial wave and k is the scaled wave number. The parameter a is taken small

enough such that we only consider linear regimes.

To capture the Landau damping, the size of the velocity domain must be chosen greater than the phase

velocity v/ (see [15]). The phase velocity is given by v/ = x/k, where x is the frequency related to k and

approximated by
x2 ¼ 1þ 3k2:
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Then, we set vmax = 6 where the velocity domain extends from �vmax to vmax. We use a number of cells

Nv = 100 for the velocity domain and Nx = 200 in the spatial direction. The boundary condition for the dis-

tribution function are periodic in the space variable. Finally, the wave number is fixed to k = 0.3 and

a = 0.001. The same numerical parameters are used for the kinetic model.

In this test, we are interested in the evolution of the square root of the electric energy approximated by
Fig. 13

Vlasov
EhðtÞ ¼
X
i

E2
i ðtÞDx

 !1=2

: ð4:7Þ
Indeed, according to the Landau theory, the amplitude of EhðtÞ is expected to be exponentially decreasing

with a frequency x.
In Fig. 13, we plot the evolution of EhðtÞ in logarithmic scale as a function of time, for the Vlasov–Pois-

son model and for the hybrid model for comparison. We also plot a line (which we call Landau line) which

passes through the maximum of each period of (4.7). For small R and for the Vlasov–Poisson equation, we
observe that the amplitude of EhðtÞ is damped exponentially in time as predicted by the Landau theory. On

the contrary, as R is growing, the damping is not exponential any more for the hybrid model. Even if the

hybrid model gives a damped wave, the amplitude of EhðtÞ oscillates around the Landau line. For large val-

ues of R, these oscillations are amplified and we observe that they are not damped any more.
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. Linear Landau damping: electric energy as a function of time in log scale. Study of the influence of R. Comparison of the

–Poisson model and the hybrid model. k = 0.3 and a = 0.001.
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Thanks to the Landau theory, the numerical results can be compared from a quantitative point of view.

Indeed, if we linearize the Vlasov–Poisson system, the damping rate of the amplitude of EhðtÞ can be esti-

mated by solving the dispersion relation [2,11]. However, when k is small enough, a more accurate formula,

which is obtained by increasing the order of the Taylor expansion predicts the damping rate of the ampli-

tude of the electric energy (see [25,15]):
Fig. 14

Poisso
c ¼
ffiffiffi
p
8

r
1

k3
� 6k

� �
exp � 1

2k2
� 3

2
� 3k2

� �
: ð4:8Þ
Our numerical results are in good agreement with (4.8) for the Vlasov–Poisson system and for the hybrid

model for small R. As R is growing, the amplitude of EhðtÞ moves away from the Landau line. In Fig. 14,

we plot the electric energy (in logarithm scale) as a function of time given by the hybrid model with a large

value of R and by the Euler–Poisson model discretized using a high order WENO method [37]. We observe

a wave with two different amplitudes for which the damping is zero. This is explained by the fact that the

Landau damping is a purely kinetic effect which cannot be derived from the hydrodynamic theory (see
[2,11]). We also notice that the two curves of Fig. 14 become different at large times. One explanation

can be the following. The WENO method uses a high order approximation (order 4 in time and order 5

in space) whereas the hybrid model is discretized by means of a first order method.

4.3. Ion acoustic wave

In this section, we study the frequency and damping of ion acoustic waves. This numerical test takes

account of both the electric field and collisions. We then consider the Eqs. (1.2) and (1.3) (where m is given
by (2.1)) to describe the evolution of the ion acoustic waves in a singly ionized plasma (see [34]). As the ionic

mean free path is bigger than the electron one, we can consider a constant electron temperature; in this case,

the electric field satisfies
eE
m

¼ � kB
m

T e

rxn
n

;
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where m is the ionic mass, kB the Boltzmann constant, Te is the electronic temperature, and n denotes the

ionic density (see [34]). The starting kinetic equation then reads
Fig
of
ot

þ v � rxf � kBT e

mn
rxn � rvf ¼ m M½f ;m� � f

� �
; ð4:9Þ
where m = m(t,x,v) is the collision frequency given by (2.1).

By choosing an initial condition of the form of (4.6), the density and the mean velocity have a purely

exponential behaviour, i.e., exp(ixt + ct). The damping c and the frequency x represent the solution of

the dispersion relation. Thus, by changing k, the desired functions x(k) and c(k) are determined.

As in [34], we rescale (4.9) using the ionic mean free path l = (kBTi)
2/(4pn0e

4lnK), (with Ti the ionic tem-
perature, n0 the unperturbed density, e the charge and lnK the Coulombian logarithm) as unit of length,

v0 = (kBTi/m)1/2 as unit of velocity and the collisional ion–ion time s = l/v0 as unit of time. Consequently,

in these units, (4.9) is written
of
ot

þ v � rxf � T e

T i

rxn
n

� rvf ¼ m M½f ;m� � f
� �

: ð4:10Þ
We consider a rescaled initial condition of the form
f0ðx; vÞ ¼
n0

ð2pÞ1=2
exp � jvj2

2

 !
ð1þ a cosðkxÞÞ; ðx; vÞ 2 ½0; 2p=k� � R; ð4:11Þ
where k is the wave number and a is the perturbation (a is chosen small enough to consider linear regimes).

Note that n0 can be taken equal to 1 because the problem is homogeneous in f. The only dimensionless
parameter of the problem are the ratio Te/Ti and k; as proposed in [34], we will consider different ratios

of temperature (equal to 1, 2, 4) with different k (from 0.025 to 1).

To accurately describe the physics of the test, we consider a velocity set from �vmax to vmax with vmax = 6.

We use a number of cells Nv = 50 in velocity whereas we consider Nx = 200 in physical space. Besides, the

perturbation a is equal to 0.001. The same numerical parameters are used for the kinetic model.

In Figs. 15–17, we plot the quantity c/k (where c is the damping rate of the perturbed density and k the

wave number as a function of k. The results obtained by both the Vlasov–BGK equation and the hybrid
. 15. Ion acoustic waves: c/k as a function of k for Te/Ti = 4. Comparison between the BGK model and the hybrid model.



Fig. 16. Ion acoustic waves: c/k as a function of k for Te/Ti = 2. Comparison between the BGK model and the hybrid model.

Fig. 17. Ion acoustic waves: c/k as a function of k for Te/Ti = 1. Comparison between the BGK model and the hybrid model.
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model (for various R) are presented. When R ¼ 0:5, the hybrid model gives satisfying results since they are

very close to the full kinetic one. When R ¼ 2, the results are in correct agreement with the BGK ones for

small values of k. As k increases, c/k moves away from the kinetic results and decreases. Besides, as R is

growing, the results become far from that obtained by the kinetic model. For example, the value R ¼ 10
(which corresponds to a full hydrodynamic model) gives a very small damping (c . 0). Like in Landau

damping case, hydrodynamic models cannot reach the ion acoustic wave damping.

We also compare our results to [34]. From a qualitative point of view, both the BGK model and the

hybrid model for R ¼ 0:5 are in good agreement with [34]. In particular, we observe that the behaviour

of c/k is proportional to k when we consider small values of k (k < 0.2). Besides, for larger values of k,

c/k becomes nearly constant and is more important when the ratio Te/Ti decreases. From a quantitative

point of view, even if our numerical results do not coincide exactly with [34], they are in correct agreement.



N. Crouseilles et al. / Journal of Computational Physics 203 (2005) 572–601 593
Indeed, at the collisional and collisionless limits (i.e., k = 0 and k = +1), our results are close to the pre-

dicted values of c/k (obtained by linearizing (4.9)). The differences between our results and those of [34] can

be explained in two ways. First, in [34], the authors consider the whole 3 dimensional case in the velocity

variable and second, they solve the linearized Fokker–Planck–Landau problem whereas a simpler collision

operator of BGK type is used here.
In Figs. 18–20, we plot x/k as a function of k. The same remarks made previously hold. Indeed, the

behaviour of the curves is correct for both the BGK model and the hybrid model for small R, since, for

small k, we recover the approximation obtained by the linearization
Fig. 18. Ion acoustic waves: x/k as a function of k for Te/Ti = 4. Comparison between the BGK model and the hybrid model.

Fig. 19. Ion acoustic waves: x/k as a function of k for Te/Ti = 2. Comparison between the BGK model and the hybrid model.



Fig. 20. Ion acoustic waves: x/k as a function of k for Te/Ti = 1. Comparison between the BGK model and the hybrid model.

Fig.
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x2 ¼ 3þ T e

T i

� �
:

Besides, we observe that, at the beginning, x/k slowly decreases as k increases. After some time, according

to the considered ratio, x/k increases slowly or remains almost constant. A similar behaviour has also been

noticed in [34]. However, when R is bigger, the numerical results given by the hybrid model are not correct.

Indeed, we observe that for R ¼ 2, x/k is a decreasing function of k, and for R ¼ 10, x/k remains almost

constant. Thus, in this case, the numerical results are not in good agreement with estimated values.
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4.4. Electron beam

In this section, we propose to validate our hybrid model by modelling the deceleration of an electron

beam in a plasma. Let us consider a beam of electrons that enter in a plasma composed of electrons.

We consider the plasma at equilibrium. Let us denote by f = f(t,x,v) the density of the electrons in the phase
space (x,v). The evolution of f can be modelized by the following scaled kinetic equation:
Fig. 22

Fig. 23
of
ot

þ v � rxf ¼ mðM½f ;m� � f Þ; ð4:12Þ
where m is given by (2.1). Eq. (4.12) is supplemented with the following initial condition:
f0ðx; vÞ ¼ Mne;ue;T e
þMnb;ub;T b

;
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where Mn;u;T ¼ n=
ffiffiffiffiffiffiffiffiffi
2pT

p
expð�jv� uj2=ð2T ÞÞ, ne, ue, Te are the plasma parameters and nb, ub, Tb the param-

eters of the beam. In this test, we choose ne = 1, ue = 0, Te = 2 for the parameters of the plasma and

nb = 0.001, ub = 6, and Tb = 0.001 are the beam parameters.

The velocity set extends from �vmax to vmax = 8 whereas the space domain is equal to [0,1]. We con-

sider Nv = 400 cells in velocity because the beam temperature is low whereas Nx = 50 is used to discre-
tize the physical space. Some periodic conditions are implemented in space whereas the distribution

function is truncated for large velocities. The same numerical parameters are used for the kinetic

model.

We are interested in the evolution in time of the density, mean velocity and temperature of the beam. As

explained in [26], the electron beam is decelerated by collisions with the particles of the plasma (electrons in

our case).

In Figs. 21–23, we plot the evolution in time of the density, mean velocity and temperature of the beam.

We observe that the density is decreasing in time. Moreover, the mean velocity remains constant equal to
the initial mean velocity of the beam. We also notice that the temperature is almost constant at the begin-

ning before increasing strongly. We remark that the results obtained by the hybrid model with R 6 4 are

superposed on the kinetic results. Indeed, the evolution of the beam is then described by the kinetic part of

the hybrid model.

In Fig. 24, we study the evolution in time of the beam by plotting the distribution function as a

function of the velocity v. We observe that the density of the beam decreases whereas its mean velocity

remains constant. As remarked above, the hybrid model gives the same results as the kinetic one when

the radius of B1 is smaller than ub. Indeed, in this case, the beam is situated in the kinetic part of the
hybrid model. On the contrary, when R is sufficiently large, i.e., the beam is contained in B1, nothing

happens. The density, mean velocity and temperature remains constant. An intermediate behaviour oc-

curs when the beam is treated by both the fluid and the kinetic equations ðR ¼ 4:24Þ. Nevertheless, the

results given the hybrid model in such a case are not correct. Indeed, the use of a fluid model to treat

the beam is not accurate at all. In this case, we notice that the numerical results are very far from the

results given by the full kinetic model.

This test case shows the limitation of a BGK collision operator. Indeed, whereas the full Fokker–

Planck–Landau operator decelerates the beam (its mean velocity decreases), the BGK operator takes
particles off the beam into the plasma without changing the mean velocity of the beam. Hence, the mean

velocity remains constant, which is not correct from a physical point of view.

Remark 4.1. Even if in the present stage of our work the numerical cost does not depend on R, an a priori

determination of a suitable R can be important. Such a choice can be made in some particular cases
(stationary shock wave for instance), but remains difficult in the general case. However, note that the

parameter R may depend on time and on space, but also on the Knudsen number. For instance, in the test

case of the stationary shock wave, R can be small at locations where the flow is known to be far from

equilibrium without destroying the accuracy. An x-dependent R can then be used. Applications concerning

nonlinear Landau damping can also be considered since after a long time, the solution becomes close to a

Maxwellian with some particles trapped in the tail. In this last case, a time-dependent R would be

appropriate.
5. Conclusion

We have presented an extension of the hybrid model introduced in [13,14] to describe systems of charged

particles. This model is derived using a domain-decomposition in the velocity space and an approximation

of the solution to the kinetic equation is made for small velocities. This approximation is based on a mo-
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ment method with an entropy minimization principle. The starting kinetic model is a Vlasov–BGK-like

equation. It takes account of an electric field and a velocity-depending collision frequency computed from

the Fokker–Planck–Landau collision operator.

Then, various numerical simulations have been made to validate the obtained hybrid model. Compari-

sons between the BGK model, the Navier–Stokes equations and the hybrid model are presented.
The hybrid model is a compromise between a kinetic and a fluid regimes and, by varying R, we can cross

between the pure fluid to the full kinetic solution. The parameter R is a kind of cutover between Maxwel-

lian and kinetic solvers.

Consequently, the present approach could be used to correctly describe some systems of particles

with a reduced cost compared to a pure kinetic description. However, this reduction has not been

the main subject of this work and the hybrid model is as costly as a direct implementation of a kinetic

model. All we have done is the derivation and the numerical validation of the hybrid model. Neverthe-

less, the optimization procedure can be done in several ways: a pre-storage of the numerical fluxes, an
explicit computation of the fluxes, the rapid calculation of the Maxwellian parameters in terms of its

moments on a ball and, finally, the use of a particle method for the kinetic part. This task is under

investigations.

From the hybrid model, one can derive a bi-fluid model in which the kinetic part is also approximated by

a fluid model. The bi-fluid model is another intermediate model between the kinetic and the fluid descrip-

tion. Besides, collisions between different species of particles (e.g. electrons and ions) can also be taken into

account. Future work will be dedicated to the two latter points.
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Appendix A. Computation of a collision frequency

This section is devoted to the computation of the collision frequency (2.1). Our starting point is the bilin-

ear FPL operator
Qðf ; gÞ ¼ CFPrv �
Z
R3

Uðv� wÞðgðwÞrvf ðvÞ � rwgðwÞf ðvÞÞ dw; ðA:1Þ
where CFP ¼ e4 lnK=ð8pm2e20Þ (e is the electric charge, lnK is the usual Coulomb logarithm and e0 is the per-
mittivity of free space), m is the mass of the considered particles and U(v) is the 3 · 3 matrix
UðvÞ ¼ I3 �
v� v

jvj2

 !
1

jvj
with I3 the identity matrix. This operator describes the interactions between electrons. The distribution

function of test particles is f whereas g denotes the distribution function of a background. Let us consider

that the particles of the background are at the local equilibrium, i.e., their associated distribution function is

a Maxwellian M whose parameters are n, u, T. Then, (A.1) becomes
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Qðf ;MÞ ¼ CFPrv � ðrvf ðvÞÞ
Z
R3

Uðv� wÞMðwÞ dw
� 	

� CFPrv � f ðvÞ
Z
R3

Uðv� wÞrwMðwÞ dw
� 	

; ðA:2Þ
where M(v) denotes the Maxwellian of parameters n the density, u the mean velocity and T the temperature
MðvÞ ¼ n

ð2pRT Þ3=2
exp � jv� uj2

2RT

 !
and R = kB/m with kB the Boltzmann constant, is the constant gas. The collision frequency of the FPL col-

lision operator is obtained using the loss term of (A.2)
mðv� uÞðv� uÞ :¼ �CFP

Z
R3

Uðv� wÞrwMðwÞ dw: ðA:3Þ
So, we have to compute the following quantity:
mðv� uÞðv� uÞ ¼ CFP

n

ð2pRT Þ3=2
1

RT

Z
R3

Uðv� wÞ exp � jw� uj2

2RT

 !
dwðv� uÞ; ðA:4Þ
because the kernel of the matrix U(v) is generated by v. By the following change of variables w ¼
ffiffiffiffiffiffiffi
RT

p
sþ u

in the integral, we get
mðv� uÞðv� uÞ ¼ CFP

n

ð2pRT Þ3=2
Z
R3

Uðv� u� sÞe�jsj2=2 dsðv� uÞ: ðA:5Þ
Thanks to a result of [19], the following matrix which depends on v:
Z
R3

Uðv� sÞ exp � jsj2

2

 !
ds
has an eigenvalue k(jvj) associated with the eigenvector v
kðjvjÞ ¼
Z
R3

1� ðv; sÞ2

jvj2jsj2

 !
1

jsj exp � jv� sj2

2

 !
ds:
Thanks to this expression, we can compute the behaviour of k at jvj = 0 and at jvj ! +1. As jvj goes to
zero, we obtain the following limit:
lim
jvj!0

kðjvjÞ ¼ 8

3
p:
Now, let us compute the behaviour when jvj ! +1
kðjvjÞ � 2ð2pÞ3=2jvj�3
: ðA:6Þ
Then, we conclude on the behaviour of our collision frequency as jv � uj goes to zero
lim
jv�uj!0

mðv� uÞ ¼ 4CFP

3
ð2pÞ�1=2n=ðRT Þ3=2 ðA:7Þ
and on the behaviour of our collision frequency as jv � uj goes to +1
mðv� uÞ � 2nCFP=jv� uj3: ðA:8Þ
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We have obtained the behaviour of our collision frequency at 0 and at +1. Then, a possible collision fre-

quency can be the following:
mðjv� ujÞ ¼ CFP

4=3ð2pÞ�1=2nðRT Þ�3=2
if jv� uj < C0

ffiffiffiffiffiffiffi
RT

p
;

2n=jv� uj3 if jv� uj > C0

ffiffiffiffiffiffiffi
RT

p
;

(
ðA:9Þ
where C0 is chosen such that m(jv�uj) is a continuous function of jv�uj
C0 ¼ 3
2

� �1=3ð2pÞ1=6:

Some similar computations leads to a BGK type collision operator taking into account collisions between

different species of particles as electrons and ions.
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